NAME

AP CALCULUS

Chapter 3 Review

DATE

PD

For questions #1-3, x(t) is measured in meters and t is measure in seconds. Justify each solution.

- 1) Suppose $x(t) = t^3 9t^2 + 15t + 4$ is a position of a particle moving along the x-axis on the interval [0,10].
 - a. Find the average velocity for the first 3 seconds.
 - Find the velocity at t = 4. b.
 - When is the particle moving to the left? Right? c.
 - When is the velocity increasing? d.
 - When is the velocity decreasing? e.
 - When is the particle speeding up? f.
 - When is the particle slowing down? g.
 - 2) A particle is moving along the x-axis on the interval [0,10].

- a. Find the average acceleration on the interval [0,10].
- Find the velocity at t = 2. b.
- Find the acceleration at t = 2. c.
- At t = 9 is the particle speeding up or slowing down? d.
- When is the particle moving to the left? Right? e.
- When is the velocity of the particle increasing? f.
- When is the acceleration of the particle negative? g
- When is the particle speeding up? h.
- When is the particle slowing down? i.

3) Given below is the position, velocity, and acceleration of a particle moving along the x-axis.

t	0	2	4	6	8
x(t)	5	-2	-3	-3	12
v(t)	1	5	3	3	8
<i>a</i> (<i>t</i>)	-3	-3	6	-3	-6

- a. Find the average velocity at between t = 0 and t = 8.
- b. Find the average acceleration at between t = 0 and t = 8.
- c. Find $\frac{x(6)-x(4)}{6-4}$. Using correct units explain what it means in the context of this problem.
- d. At t = 2 is the particle moving left or right?
- e. At t = 2 is the velocity decreasing or increasing?
- At t = 2 is the particle speeding up or slowing down?
- Does the particle change directions at least once t = 0 and g. t = 4?
- 4) Use the table to find h'(3) for each. (Don't forget the product and quotient rules!)

x	f(x)	f'(x)	g(x)	g'(x)
3	5	-3	2	4

a.
$$h(x) = 2f(x) + 3g(x)$$

b. $h(x) = f(x)g(x)$
c. $h(x) = \frac{f(x)}{x^2}$

d. $h(x) = \frac{d}{f(x)}$